Hall Ticket Number:

Code No.: 21011 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year I-Semester Supplementary Examinations, May/June-2017

Mathematics-III (Civil, CSE, ECE and Mech.)

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

1. If $f(x) = \begin{cases} 1 & if \ 0 \le x \le 1 \\ 0 & if \ x > 1 \end{cases}$, estimate the value of Fourier series at x = 1.

2. Expand f(x) = x in Half range cosine series over [0,1].

3. If V = f(ax + by), compute the PDE satisfying the function V.

- 4. Categorize the PDEs: $\frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 v}{\partial y^2}$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$.
- 5. List the disadvantages of the Taylor series method.
- 6. What are advantages of method of Runge Kutta method of order 4?
- 7. Derive the mean of a Poisson distribution.
- 8. Evaluate k if f(x) = k(1 x) for $0 \le x \le 1$ is pdf of a random variable X.
- 9. Define Karl Pearson's coefficient of correlation.
- 10. Show a correlation coefficient is geometric mean between regression coefficients.

Part-B $(5 \times 10 = 50 \text{ Marks})$

- 11. a) Expand $f(x) = \begin{cases} \ddot{\pi} + x & \text{if } -\pi \le x \le 0\\ 0 & \text{if } 0 < x \le \pi \end{cases}$, expand f(x) in Fourier series and hence find [5] the series for $\frac{\pi^2}{2}$
 - b) Expand $f(x) = \begin{cases} 0 & if -\frac{\pi}{2} \le x < 0\\ sinx & if \ 0 \le x < \pi/2 \end{cases}$ and f(x) is periodic of period 2π in half range [5] sine series.

12. a) Solve 2yzp + zxq = 3xy.

- b) Form partial differential equation for z, if $f(x + y + z, x^2 + y^2 + z^2)$. [5]
- 13. a) Calculate root of the equation $x e^{x} 1 = 0$ near to 0.5 correct up to two decimals. [5]
 - b) Solve y'(x) = x² + y², y(1) = 2 to find y(1.2) within two steps choosing h = 0.1 using [5] Runge Kutta 4th order method.
- 14. a) In an examination the grades awarded for 100 marks are as follows:

 Grade:
 Distinction

 First class
 Second class

 Third class
 Fail

 Range:
 80 - 100 60 - 80 45 - 60 30 - 45 0 - 30

where the lower class is included for awarding grade and upper class is excluded. It is found that 8% of the students got distinction and 8% of students failed. Find the average marks and percentage students obtaining second class.

[5]

[5]

::2::

Code No. : 21011 \$

- b) The sizes (n_1, n_2) and means (μ_1, μ_2) of two independent samples are $n_1 = 400$, $n_2 = 225$ [5] and $\mu_1 = 3.5$, $\mu_2 = 3.0$. Find whether they are drawn from the same population.
- 15. a) Fit a straight line of the form y = a + bx using the Method of Least Squares for the [5] following data:

X:	1	2	3	4	5	
Y:	0.5	2	4.5	8	12.5	

b) Marks in Economics and Statistics for 10 students are as below. Find the coefficient [5] of correlation between the subjects.

	1	2	3	4	5.	6	7	8	9	10
Economics:	78	36	98	25	75	82	90	62	65	39
Statistics:	84	51	91	60	68	62	86	58	53	47

16. a) Expand the function $f(x) = x \sin x$ as the fourier series in the interval $-\pi \le x \le \pi$. [4]

b) Solve the PDE $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions that i) u(0,l) = 0, ii) $\frac{\partial u}{\partial x} = -au$ at [6] x = l and iii) u(x,0) = f(x)

17. Answer any two of the following:

- a) Using Lagrange formula express the functions $\frac{3x^2+x+1}{(x-1)(x-2)(x-3)}$ as sum of partial [5] fractions.
- b) A survey of 320 families with 5 children is as follows. [5] No. of boys • 4 5 3 2 1 0 No. of families : 14 56 110 88 40 12 320 = totalIs this data consistent with the hypothesis that male and female births are equally probable?
- c) If $\sigma_y^2 = 16$ and two lines of regression are given by 5y 8x + 17 = 0 and 2y 5x + 14 = 0, [5] find i) the mean values of x and y, ii) σ_x^2 and coefficient of correlation between x and y.
