VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. II Year I-Semester Supplementary Examinations, May/June-2017

Mathematics-III

(Civil, CSE, ECE and Mech.)
Time: $\mathbf{3}$ hours
Max. Marks: 70

- Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A ($10 \times 2=20 \mathrm{Marks}$)

1. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } x>1\end{array}\right.$, estimate the value of Fourier series at $\mathrm{x}=1$.
2. Expand $f(x)=x$ in Half range cosine series over $[0,1]$.
3. If $V=f(a x+b y)$, compute the PDE satisfying the function V.
4. Categorize the PDEs: $\frac{\partial^{2} V}{\partial x^{2}}=\frac{\partial^{2} V}{\partial y^{2}}$ and $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0$.
5. List the disadvantages of the Taylor series method.
6. What are advantages of method of Runge Kutta method of order 4?
7. Derive the mean of a Poisson distribution.
8. Evaluate k if $\mathrm{f}(\mathrm{x})=\mathrm{k}(1-\mathrm{x})$ for $0 \leq \mathrm{x} \leq 1$ is pdf of a random variable X .
9. Define Karl Pearson's coefficient of correlation.
10. Show a correlation coefficient is geometric mean between regression coefficients.

$$
\begin{equation*}
\text { Part-B }(5 \times 10=50 \text { Marks }) \tag{5}
\end{equation*}
$$

11. a) Expand $f(x)=\left\{\begin{array}{cc}\tilde{\pi}+x & \text { if }-\pi \leq x \leq 0 \\ 0 & \text { if } 0<x \leq \pi\end{array}\right.$, expand $\mathrm{f}(\mathrm{x})$ in Fourier series and hence find the series for $\frac{\pi^{2}}{8}$
b) Expand $f(x)=\left\{\begin{array}{c}0 \text { if }-\frac{\pi}{2} \leq x<0 \\ \sin x \text { if } 0 \leq x<\pi / 2\end{array}\right.$ and $\mathrm{f}(\mathrm{x})$ is periodic of period 2π in half range sine series.
12. a) Solve $2 y z p+z x q=3 x y$.
b) Form partial differential equation for z, if $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)$.
13. a) Calculate root of the equation $x . e^{x}-1=0$ near to 0.5 correct up to two decimals.
b) Solve $y^{\prime}(x)=x^{2}+y^{2}, y(1)=2$ to find $y(1.2)$ within two steps choosing $h=0.1$ using Runge Kutta $4^{\text {th }}$ order method.
14. a) In an examination the grades awarded for 100 marks are as follows:

Grade:	Distinction	First class	Second class	Third class	Fail
Range:	$80-100$	$60-80$	$45-60$	$30-45$	$0-30$

where the lower class is included for awarding grade and upper class is excluded. It is found that 8% of the students got distinction and 8% of students failed. Find the average marks and percentage students obtaining second class.
b) The sizes $\left(n_{1}, n_{2}\right)$ and means (μ_{1}, μ_{2}) of two independent samples are $n_{1}=400, n_{2}=225$ and $\mu_{1}=3.5, \mu_{2}=3.0$. Find whether they are drawn from the same population.
15. a) Fit a straight line of the form $y=a+b x$ using the Method of Least Squares for the following data:

$\mathrm{X}:$	1	2	3	4	5
$\mathrm{Y}:$	0.5	2	4.5	8	12.5

b) Marks in Economics and Statistics for 10 students are as below. Find the coefficient of correlation between the subjects.

	1	2	3	4	5	6	7	8	9	10
Economics:	78	36	98	25	75	82	90	62	65	39
Statistics:	84	51	91	60	68	62	86	58	53	47

16. a) Expand the function $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$ as the fourier series in the interval $-\pi \leq x \leq \pi$.
b) Solve the PDE $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ under the conditions that i) $u(0, l)=0$, ii) $\frac{\partial u}{\partial x}=-a u$ at $\mathrm{x}=l$ and iii) $\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})$

17. Answer any two of the following:

a) Using Lagrange formula express the functions $\frac{3 x^{2}+x+1}{(x-1)(x-2)(x-3)}$ as sum of partial [5]
fractions fractions.
b) A survey of 320 families with 5 children is as follows.

No. of boys	$:$	5	4	3	2	1	0	
No. of families	$:$	14	56	110	88	40	12	$320=$ total

Is this data consistent with the hypothesis that male and female births are equally
probable?
c) If $\sigma_{y}{ }^{2}=16$ and two lines of regression are given by $5 y-8 x+17=0$ and $2 y-5 x+14=0$, [5] find i) the mean values of x and y, ii) $\sigma_{x}{ }^{2}$ and coefficient of correlation between x and y.

